Forensic Pattern Recognition

Anil K. Jain

Michigan State University September 1, 2015

http://biometrics.cse.msu.edu/

Examples of Forensic Patterns

Fingerprint

Face

Scars, Marks, and Tattoos (SMT)

Ballistic image (breech face impression)

Forensic Pattern Recognition Systems

Morpho (2012)

Morpho (2014)

IBM (1998)

Double-loop changed to left loop

Composite to Photo Matching

(Gallery of one million mug shots)

Race: White Gender: Male Age: 20 to 30

Ix

(b) WITH DEMOGRAPHIC FILTERING (WHITE MALE, 20-30) *1a* 1b1cmean 112 353 5,432 27,617 1x686 518 25,780 1,409 *1*y 1z. 3,958 14,670 1.142 1,416 424 5,790 **71 82** mean

1b

Tamerlan Tsarnaev

S. Klum, H. Han, B. Klare and A. K. Jain, "The FaceSketchID System: Matching Facial Composites to Mugshots", *IEEE Transactions on Information Forensics and Security*, December 2014.

Outline

- Design of pattern recognition system
- Fingerprint matching
- Face recognition
- Ballistic image matching
- Summary

Pattern Recognition

- Given an input pattern, make a decision about the pattern
 - Fully automatic ("lights out" mode)
 - Semi-automatic (human in the loop)
- Types of decisions
 - Verification (1:1 comparison; same source)
 - Search (1: N comparisons; watch list)
 - Classification (e.g., fingerprint type)
- Why?
 - Throughput, cost, consistency, ease examiner workload,...

Verification

Same person?

Search

Probe

Gallery

What if the suspect is not in the database (Open set search)?

Semi-automated Search

Face Database

Fingerprint Classification

Why is Pattern Recognition Difficult?

Jan 1995

Score=0.99

Score=0.62

Score=0.41

Score=0.26

Intra-class variability

Inter-class similarity

Forensic Pattern Recognition System

Challenges: domain knowledge, requirements, training & test data, "invariant" features, "robust" matcher

Courtesy: Pete Langenfeld, MSP

2009 driver license photo

Top-10 retrievals

Probe Image

Gallery: 30M DMV photos + 4M mugshot photos

Smile makes a difference!

Courtesy: Pete Langenfeld, MSP

Bias in Automatic Face Search

Fingerprint Matching

Rolled, Plain (Slap) and Latent Fingerprints

Drivers of Fingerprint Technology

- Progress in processor, storage & sensing technology
- Applications beyond forensics
 - National registries (Aadhaar program in India has enrolled 900 million residents; tenprints, 2 irides, face), mobile unlock and payment

Processor & Storage Technology

Michigan AFIS (1989)

Michigan AFIS (2015)

Enrollment of 724K subjects; average of 400 tenprint search/day @15K comparisons/sec.

Enrollment of 4M; 2K tenprint search/day, 35 latent search/day, 5 latent palm search/day @25M comparisons/sec.

Fingerprint Readers

Identix 12.5cm x 18cm x 6cm; 1 lb. Cost: ~\$1,500 (1995)

Digital Persona (Optical)

Lumidigm (Multispectral)

Authentec, Swipe sensor (Capacitive)

Crossmatch (Optical)

Morpho "Finger on the Fly" (Contactless)

(Capacitive)

(500PPI)

NIST Evaluations

Test	Database & Evaluation	Performance
FpVTE 2003	10K plain fingerprints; 1:1 comparison (Medium scale)	FRR = 0.6% @FAR=0.01%
FpVTE 2012	30K subjects (plain fingerprints) against 100K subjects (plain fingerprints); 1:N comparison (open set)	FNIR=1.9% @FPIR=0.1% (right index finger)
ELFT-EFS 2011	1,114 latent prints against 100K subjects (Rolled + Plain)	Rank-1: 62.2%
ELFT-EFS 2012	1,066 latent prints against 100K subjects (Rolled + Plain)	Rank-1: 67.2%

http://www.nist.gov/itl/iad/ig/biometric_evaluations.cfm

Fingerprint Features

Ridge flow and pattern type

Level-1 Features

Minutiae

Level-2 Features

Pores and incipient ridges

Level-3 Features

All AFIS use Level-1 and Level-2 features + some proprietary features

Minutiae Descriptor

- More than just (x, y, theta)
- Ridge flow-based Descriptor
 - Ridge flow values in the minutiae neighborhood
- Neighboring minutiae-based descriptor
 - Set of minutiae in the neighborhood

Minutia neighborhood

Ridge flow-based descriptor

Neighboring minutiae-based descriptor

Automatic Minutiae Extraction

Fingerprint Image Quality

#False Minutiae = 0 #False Minutiae = 7

#False Minutiae = 27

Image Enhancement

Minutiae extraction after enhancement

Fingerprint Matching

Latent Fingerprint Matching

Same source?

Challenges: Complex background, low ridge/valley contrast, small print area, distortion

Latent Segmentation & Enhancement

Evaluation on NIST SD 27

Latent (retrieval rank 180)

Mate

Preprocessed latent

Image + preprocessed latent retrieved the mate at rank 4

Expert Crowdsourcing Framework

Sample Markups by Six Examiners

Crowdsourcing Improves Performance

Improvements in Rank-1 hit rate: 8% (all latents), 2% (good), 8% (bad), 12% (ugly),

Automatic Face Recognition

Drivers of Face Recognition Technology

Cameras everywhere (surveillance to mobile phones), de-duplication

Information in a Face

Identity: ABC

Age: ~40

Gender: Male

Ethnicity: White

Hair: Short, Brown

Moustache: Yes

Beard: Yes

Mole: Yes

Scar: Yes

Other attributes: expression, emotion

Automated Face Recognition

Face Detection

Two-class classification: face v. non-face

Facial Landmark Extraction

Images of one subject in NIST IJB-A data, overlaid with V-J detector & dlib landmarks

Face Representation: Holistic

EigenFaces (PCA)

Fisherfaces (LDA)

Reconstructed face

Minimize reconstruction error

Maximize between-class to within-class scatter

Face Representation: Local

- Local Binary Patterns (LBP)
 - Represent a local region as distribution of LBP features
 - normalized histogram
 - Improved accuracy over appearance-based methods
- Multi-resolution LBP (MLBP)

Histogram of LBP feature values

Convolutional Neural (Deep) Network

Deep Network Training

- Deep ConvNet is trained with CASIA-Webface dataset
 - Original 494, 414 images of 10,575 subjects; landmarks could be detected in only 435,689 images of 10,575 subjects (88% of images)
 - Average: 38 images/subject
- Preprocessing: face and landmark detection
 - Align face images using the centers of eyes and mouth

Different subjects (#subjects = 10,575)

Multiple images of the same subject, # image = 247

State of the Art: Verification

FRGC v2.0 (2006) MBGC (2010) LFW (2007) IJB-A (2015)

D. Wang, C. Otto and A. K. Jain, "Face Search at Scale: 80 Million Gallery", arXiv, July 28, 2015

Close/Open Set Face Identification

	PCSO (mugshots)			LFW (web)			IJB-A (web)		
Closed set (CMC @ Rank 1)	0.864			0.602			0.676		
Closed set (CMC @ Rank 10)	0.989			0.786			0.764		
Open set (FNIR @ 0.1 FPIR)	0.211			0.412			0.278		
Open set (FNIR @ 0.01 FPIR)	0.333			0.645			0.414		
Experimental Setting: Gallery size, # genuine queries, # imposter queries	1M	3K	7K	80M	3.3K	4K	80M	11K	4K

Two examples of face retrieval using LFW Dataset

Ballistic Image Matching

Firearm Crime Statistics

- 500,000 firearms related crimes/year
- 1,000+ examination cases per month at Michigan State Forensics Lab
- Firearms in court:
 - Colorado theater shooting http://news.yahoo.com/judge-colorado-theater-massacre-case-allows-ballistics-evidence-220343397.html
 - Missouri conviction overturned http://www.stltoday.com/news/local/crime-and-courts/missouri-judge-throws-out-ballistic-evidence-in-murder-case/article_b7cdf420-a792-515d-9a02-3deeb6a6881d.html
- Manual comparison is tedious, subjective and time-consuming (~2 hours)

Firearm Overview

Striations on the bullet

Firearm Overview

Current Practice: Manual Comparison

Compare evidence cartridge case with a test cartridge case

Automated System for Breach Face Impression Comparison

Learning: Which features (appearance, texture) and what similarity measure?

J. Roth, A. Carriveau, X. Liu and A. K. Jain, "Learning-based Ballistic Breech Face Impression Image Matching", IEEE *BTAS*, Arlington, Virginia, September 8-11, 2015

Automated System for Breach Face Impression Search

Learning: which features to select and what similarity measure?

Ballistics Pattern Matching

- Focus on breech face impression
- Operational forensic laboratory (OFL) data via 73 Glocks (2/glock), courtesy of Michigan Forensics Division
- Features are extracted in the "unrolled" image space and learned via "boosting"

RoC Curve for Operational Forensic Ballistic Data

Perfect recognition on the NIST dataset collected in controlled lab setting

Summary & Challenges

- Designing recognition systems is challenging
 - Intra-class variability
 - Noise and distortion
- Domain knowledge & system requirements needed
- Lack of operational forensic databases for
 - Designing robust recognition systems
 - Developing probabilistic models
 - Studying discriminative capacity & persistence
- Google trained its FR system on ~200M images of 8M identities (we trained on 460K faces of 10K identities)
- How to involve CS/EE community in forensics?

Identical Quadruplets

Haircuts help to avoid confusion among the four six-year-old twins